The Role of Product Architecture in the Manufacturing Firm

When considering a product, it is important to first consider the overall architecture of the product in order to end up with a coherent design. Product architecture is the definition of said product in the context of aligning physical requirements to functional requirements. This is similar to other design methodologies such as axiomatic design and is wholly compatible with many of those systems.

Karl Ulrich, in the early 1990s, attempted to qualify product architecture in his paper on the role of product architectures in manufacturing. Ulrich discussed overall product architecture, taxonomy behind these product architectures, and various attributes of these architectures. Ulrich completes his writings with a summation of research opportunities as they existed in the 1990s [1].

Product architecture, as defined by Ulrich, is the arrangement of functional elements as they are mapped to physical components. Ulrich also discusses the interfaces between physical components as aspects of the product architecture [2]. Ulrich suggests the use of standardized function description language along the same lines as Stone et al. [2]. This would allow for greater reproducibility among designs working within the same product architecture. Standardized nomenclature also reduces errors from having to learn a new product architecture framework that may have eccentricities that are unknown to the new designer.

Functional structure can be defined at multiple levels of abstraction. In fact, it may be more useful in early product development to start defining functional structure in the most generic terms possible to eliminate the risk of inadvertently removing design options prior to beginning the design process.

As the design process progresses, functional structure will become more clearly defined. Ulrich recommends the classical approach to functional element modeling. This approach utilizes signals, materials, forces, and energy interactions using the verb-noun relationship common in other design methodologies [1].

Ulrich draws distinction between modular architecture and integral architecture. This relates to the coupling between physical components in terms of change management and design modification. Ulrich recognized that decoupled interfaces result in a product architecture that is more resilient to change [1]. Dependencies found in integral architecture systems may result in a small change having large ripples throughout the product. This is a non-ideal situation in most designs.

Modular architectures may be further subdivided into four primary styles. Slot architecture utilizes interchangeable parts that are decoupled yet still required in order to achieve the relevant functional requirement. Bus architecture allows for greater modularity in that parts are both interchangeable and expandable rather than required. Sectional architecture uses a single interface style in a ring configuration [1]. These product modular architecture styles may be used as a framework in early concept design stages.

Ulrich considers the impact of change within the framework of product architecture. Products may be upgraded, added to, adapted, worn, consumed, or reconfigured. This requires a modular architecture style in order to maintain the product in a usable configuration [1]. Products may undergo change in the existing product generation or in subsequent generations. Each subsequent generation should be evaluated for reincorporation of standard features and parts when possible to reduce retooling costs.

Product variety may be managed through product architecture. As variety drives consumer excitement, it is critical to ensure that adequate variety exists within the consumer-space in order to drive product sales. As variety drives cost increases, the product architecture must account for maintaining maximum variety at minimum cost.

Similar to reuse of preceding generation product parts, standardization of product components helps to drive lower costs in the manufacturing process. Maintaining adequate product architecture documentation allows for improved identification of opportunities for incorporation of standardized parts. Products using a modular product architecture are more likely to benefit from standardized part incorporation.

Ulrich’s work would later be used by others as a framework for several different design methodologies and systems. The careful application of Ulrich’s techniques would drive future design method improvements for years. By understanding the historical context of modern design methodologies, design engineers are better able to place modern research in context to the developments found in the past.

[1] Ulrich, Karl. “The role of product architecture in the manufacturing firm.”Research policy 24.3 (1995): 419-440. 
[2] Stone, R. B. and Wood, K. L., 2000, “Development of a functional basis for design,” Journal of Mechanical Design, Vol. 122, p. 359. – 370

One Response

  1. pcte
    pcte at |

    Thanks for the amazing post. I am sure many people will get a lot of insight after reading this. Product architecture is indeed a good idea to invest on before starting the manufacturing process. Keep up the excellent work of keeping people aware of these advancements.


Leave a Reply